102 research outputs found

    Protein subunit association: NOT a social network

    Get PDF
    International audienceMost proteins cannot function as single unit but associate subunits via the formation of protein interfaces, to be biologically active. How the amino acids involved in subunit association, so-called hot spots, regulate the formation of a protein interface is still an open question. Here, we show how network and graph theories can help addressing the role of hot spots. We built a MatLab code called SpectralPro which identifies hot spots and reconstructs the protein interface as a subnetwork of hot spots in interaction, with the hot spots as nodes and the bonds between hot spots as links. Using as a case study, the cholera toxin B pentamer (five subunits), we investigate if the degree of a node, namely the number of contacts of a hot spot, is important in the formation of an interface. The degree of a node is known to be important in many real networks. For example in social networks, hubs control the communication between most nodes and as such are vulnerable to changes. But our result shows that in the toxin interface sub-graph hub-like nodes are less vulnerable to change than single link node

    Cholera Toxin B Subunits Assemble into Pentamers - Proposition of a Fly-Casting Mechanism

    Get PDF
    The cholera toxin B pentamer (CtxB5), which belongs to the AB5 toxin family, is used as a model study for protein assembly. The effect of the pH on the reassembly of the toxin was investigated using immunochemical, electrophoretic and spectroscopic methods. Three pH-dependent steps were identified during the toxin reassembly: (i) acquisition of a fully assembly-competent fold by the CtxB monomer, (ii) association of CtxB monomer into oligomers, (iii) acquisition of the native fold by the CtxB pentamer. The results show that CtxB5 and the related heat labile enterotoxin LTB5 have distinct mechanisms of assembly despite sharing high sequence identity (84%) and almost identical atomic structures. The difference can be pinpointed to four histidines which are spread along the protein sequence and may act together. Thus, most of the toxin B amino acids appear negligible for the assembly, raising the possibility that assembly is driven by a small network of amino acids instead of involving all of them

    Beta-Strand Interfaces of Non-Dimeric Protein Oligomers Are Characterized by Scattered Charged Residue Patterns

    Get PDF
    Protein oligomers are formed either permanently, transiently or even by default. The protein chains are associated through intermolecular interactions constituting the protein interface. The protein interfaces of 40 soluble protein oligomers of stƓchiometries above two are investigated using a quantitative and qualitative methodology, which analyzes the x-ray structures of the protein oligomers and considers their interfaces as interaction networks. The protein oligomers of the dataset share the same geometry of interface, made by the association of two individual ÎČ-strands (ÎČ-interfaces), but are otherwise unrelated. The results show that the ÎČ-interfaces are made of two interdigitated interaction networks. One of them involves interactions between main chain atoms (backbone network) while the other involves interactions between side chain and backbone atoms or between only side chain atoms (side chain network). Each one has its own characteristics which can be associated to a distinct role. The secondary structure of the ÎČ-interfaces is implemented through the backbone networks which are enriched with the hydrophobic amino acids favored in intramolecular ÎČ-sheets (MCWIV). The intermolecular specificity is provided by the side chain networks via positioning different types of charged residues at the extremities (arginine) and in the middle (glutamic acid and histidine) of the interface. Such charge distribution helps discriminating between sequences of intermolecular ÎČ-strands, of intramolecular ÎČ-strands and of ÎČ-strands forming ÎČ-amyloid fibers. This might open new venues for drug designs and predictive tool developments. Moreover, the ÎČ-strands of the cholera toxin B subunit interface, when produced individually as synthetic peptides, are capable of inhibiting the assembly of the toxin into pentamers. Thus, their sequences contain the features necessary for a ÎČ-interface formation. Such ÎČ-strands could be considered as ‘assemblons’, independent associating units, by homology to the foldons (independent folding unit). Such property would be extremely valuable in term of assembly inhibitory drug development

    2015/16 seasonal vaccine effectiveness against hospitalisation with influenza a(H1N1)pdm09 and B among elderly people in Europe: Results from the I-MOVE+ project

    Get PDF
    We conducted a multicentre test-negative caseù\u80\u93control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged ù\u89„ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases

    Oligomerization of Chemical and Biological Compounds

    No full text
    Many thanks to the authors for high quality chapters and to the referees for helping improve the manuscripts. The book is interdisciplinary, it covers fields from organic chemistry to mathematics, and raises different aspects of oligomerization. It is a great source of information as every chapter introduces general knowledge and deep details. Mixing communities is to instigate novel ideas and hopefully help looking at oligomerization with new eyes

    Proteins: Natural “SMART” material

    No full text
    International audienc

    Perturbations in networks

    No full text
    International audienc

    Oligomeric Interfaces Under the Lens: Gemini

    Get PDF
    The assembly of subunits in protein oligomers is an important topic to study as a vast number of proteins exists as stable or transient oligomer and because it is a mechanism used by some protein oligomers for killing cells (e.g., perforin from the human immune system, pore-forming toxins from bacteria, phage, amoeba, protein misfolding diseases, etc.). Only a few of the amino acids that constitute a protein oligomer seem to regulate the capacity of the protein to assemble (to form interfaces), and some of these amino acids are localized at the interfaces that link the different chains. The identification of the residues of these interfaces is rather difficult. We have developed a series of programs, under the common name of Gemini, that can select the subset of the residues that is involved in the interfaces of a protein oligomer of known atomic structure, and generate a 2D interaction network (or graph) of the subset. The graphs generated for several oligomers demonstrate the accuracy of the selection of subsets that are involved in the geometrical and the chemical properties of interfaces. The results of the Gemini programs are in good agreement with those of similar programs with an advantage that Gemini programs can perform the residue selection much more rapidly. Moreover, Gemini programs can also perform on a single protein oligomer without the need of comparison partners. The graphs are extremely useful for comparative studies that would help in addressing questions not only on the sequence specificity of protein interfaces but also on th

    A computational methodology to diagnose sequence-variant dynamic perturbations by comparing atomic protein structures

    No full text
    International audienceAbstract Motivation The objective is to diagnose dynamics perturbations caused by amino acid mutations as prerequisite to assess protein functional health or drug failure, simply using network models of protein X-ray structures. Results We find that the differences in the allocation of the atomic interactions of each amino acid to 1D, 2D, 3D, 4D structural levels between variants structurally robust, recover experimental dynamic perturbations. The allocation measure validated on two B-pentamers variants of AB5 toxins having 17 mutations, also distinguishes dynamic perturbations of pathogenic and non-pathogenic Transthyretin single-mutants. Finally, the main proteases of the coronaviruses SARS-CoV and SARS-CoV-2 exhibit changes in the allocation measure, raising the possibility of drug failure despite the main proteases structural similarity. Availability The Python code used for the production of the results is available at github.com/lorpac/protein_partitioning_atomic_contacts. The authors will run the analysis on any PDB structures of protein variants upon request. Supplementary information Supplementary data are available at Bioinformatics online
    • 

    corecore